

Pergamon

0040-4039(94)00886-8

Formation of Highly Substituted Cyclopentanes from Radical and Anionic Michael Cyclisations of α -Iodo- γ - and - δ -lactones

Kenneth Y. Hsia.^a Peter Ward,^b R. Brian Lamont,^b Paul M. de O. Lilley,^c David J. Watkin^c and George W. J. Fleet^a

^aDyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY, UK; bGlaxo Research & Development, Greenford Road, Greenford, Middlesex UB6 0HE, UK; ^cChemical Crystallography Laboratory, Oxford University, 9, Parks Road, Oxford OX1 3PD, UK

Abstract: α -Iodo-δ- and -y-hexonolactones with α , β -unsaturated esters developed from C-6 undergo both tributyltin hydride-induced radical and base catalysed anionic Michael cyclisations and form bicyclic lactones with very highly substituted homochiral cyclopentanes. The δ-lactones
give cyclopentane products in which adjacent carbon substituteds on the cyclopentanes in S-lactones
give cyclopentane product

Carbohydrate lactones are almost ideal starting materials for the synthesis of a wide range of highly functionalised targets by procedures in which it is rarely necessary to use more than isopropylidene protection.¹ Recently, we have reported a number of high yielding aldol reactions² of 5formyl-δ-lactones to give very highly substituted cyclopentanes. However, rather different behaviour is found in these reactions between compounds epimeric at C-2 of the lactone. Thus, the iodide 1α reacts with lithium iodide to give 2 by an overall reductive aldol condensation in 55% yield; only very low yields of 2 are formed by treatment of the epimeric 1β under the same conditions [Scheme 1]. The reverse was found in the efficiency of aldol condensations in the case of the two epimeric iodoaldehydes. Thus, 1β in

Scheme 1 (i) Lil, THF (ii) KF, 18-crown-6, MeCN

the presence of potassium fluoride in acetonitrile gave the bicyclic iodolactone 3 in 81% yield; in contrast, 1 α gave only trace amounts of 3.³ This paper extends the applications of iodoaldehydes such 1 in other cyclisation reactions; the δ -lactones 4 undergo (i) reductive radical cyclisations in good yields to give 5 and (ii) intramolecular anionic Michael closure to form 6. The highly substituted cyclopentanes 5 and 6 have

the adjacent carbon substituents on the cyclopentane cis to each other. Nucleophilic ring opening of 5 and 6 should give 7. Analogous cyclisations of the γ lactones 8 give 9 and 10 in which the adiacent carbon substituents on the cyclopentane are trans related. Reaction of 9 and 10 should give access to 11, epimeric with 7.

The precursors for the cyclisation reactions are readily available from the aldehydes 1α and 16.2 Thus, reaction of 1α with the stabilised Wittig reagent Ph₃P=CHCOOMe gave a mixture of 4α -trans, m.p. 125-127^oC, $[\alpha]_D^{20}$ -22.4 (c, 1.04 in CHCl₃) in 12% yield and 4α -cis, m.p. 107-108^oC, $[\alpha]_D^{20}$ -8.6 (c, 0.99 in CHCl₃) in 59% yield [Scheme 2]. Treatment of 4 α -cis with trifluoroacetic acid in aqueous dioxan caused removal of the isopropylidene protecting group, isomerisation of the δ -lactone to the more stable γ -lactone and closure of the C-5 hydroxyl group onto the ester carbonyl to give the dilactone 8α , an oil, $[\alpha]_D^{20}$ -47.0 (c, 1.64 in CH3CN) in 63% yield. The remaining free hydroxyl group in &a, with trimethylsilyl chloride in tetrahydrofuran in the presence of pyridine, was converted into the silyl ether 12 α , m.p. 97-99 \degree C, $[\alpha]_D^2$ ⁰ -53.3 (c, 0.75 in CHCl₃), in 76% yield.

Scheme 2 (i) Ph₃PCHCOOMe, toluene (ii) CF₃COOH, H₂O, dioxan (iii) Me₃SiCl, pyridine, THF (iv) H₂, Pd, NaOAc, MeOH The *cis-olefin* 4 β -cis,⁴ m.p. 171-173^oC, $[\alpha]_D^{20}$ +20.6 (c, 1.06 in CHCl₃), was also the major product

[46% yield] from the Wittig reaction of 1β with Ph 3 PCHCOOMe; the *trans*-isomer 4 β -trans, m.p. 192-194 C , $[\alpha_D]^{20}$ +63.1 (c, 1.0 in CHCl₃). was isolated in 24% yield. Treatment of 4 β -cis, with acid gave the dilactone 8 β , oil, $[\alpha]_D^{20}$ -9.9 (c, 1.3 in CH₃CN) in 80% yield, which was converted into the corresponding silyl ether 12 β , m.p. 146-148°C, $[\alpha]_D^{20}$ -66.7 (c, 1.0 in CHCl₃) in 76% yield. All four diastereomeric olefins 4 with hydrogen in methanol in the presence of palladium black gave the same saturated ester 13, m.p. 73-74 $^{\circ}$ C, [α] 20 +107.4 (c, 1.02 in CHCl₃).

Cyclisations of iodo- δ -lactones 4. Fraser-Reid and co-workers⁵ have developed the use of intramolecular radical cyclisations to form very highly substituted cyclopentanes. For example, the iodoester 14 with tributyltin hydride undergoes a reductive cyclisation to give the bicyclic acetal 15 in 97% $Q \rightarrow$ COOM yield;⁶ this procedure efficiently produces a 0 مر^{ام ا} & -I cyclopentane ring in which the two carbon
substituents are cis-related \blacksquare 0 COOMe Bushin O OMo

substituents are cis-related.

 14 15 The cyclisations of the iodo- δ -lactones 4 induced by tributyltin hydride provide a complementary procedure to that of methyl pyranosides such as 14; thus, 4 α -cis, 4 β -cis, and 4 β -trans on treatment with tributyltin hydride in toluene at 80°C in the presence of AIBN cyclise gave the bicyclic lactone 5, m.p. 60-61^oC, $[\alpha]_D^{20}$ -45.7 (c, 1.02 in CHCl₃) in yields of 79, 77 and 83% respectively [Scheme 3].

Scheme 3 (i) Bu₃SnH, AIBN, toluene, 80°C (ii) tert-BuOK, THF (iii) LiLH₂O, THF

Intramolecular anionic Michael cyclisations are widely used in synthesis, although such closures to form highly functionalised bicyclic systems are rare.⁷ Both 4 α -cis and 4 β -cis react with potassium tertbutoxide in tetrahydrofuran to give the bridgehead bicyclic iodolactone 6 ,⁸ m.p. 113-114^oC, $[\alpha]_D$ ²⁰+43.1 $(c, 1.01$ in CHCl₃) in yields of approximately 25%. The diiodo compound 16,⁹ m.p. 180-181^oC, $\left[\alpha\right]_0^{20}$ **+83.9 (c, 0.81 in CHC13) could also he isolated in yields of around 10%. The fotmation of a small amount of 16 indicates that the initially formed bicyclic anion may abstract a positive iodine from the starting material in preference to a proton. Unlike the marked difference in the yields of aldol products from the** iodoaldehydes 1α and 1β , the behaviour of the two Z-enoates 4α -cis and 4β -cis in the intramolecular anionic Michael addition is almost identical; in contrast, 4⁸-trans did not give any of the bicyclic lactone **products.** Work is in progress to optimise the yields of these ionic cyclisations. The structure **of 16 was determined by X-ray crystallographic analysis, 16 could be** converted **to the monoiodo lactone 6 by** treatment with lithium iodide hydrate in tetrahydrofuran¹⁰ in 80% yield while further reduction of 6 with **tributyltin hydride gave 5. Thus the structures of all the bicyclic lactones with the carbon chains cis to each other are firmly established.**

Scheme 4 (i) Bu₃SnH, AIBN, toluene or benzene, 80°C (ii) tert-BuOK, THF (iii) CF₃COOH, H₂O, dioxan Cyclisations of iodo-*y*-lactones 8 and **12.** Both α and $\beta\beta$ reacted with tributyltin hydride, added over six hours, in benzene to give the bicyclic lactone 9,¹¹ m.p. 189-191^oC, α _D²⁰ -60.6 (c, 0.99 in **CH3CN), in yields of 50 and 49% respectively [Scheme 41. Reduction of the trimetbylsilyl ethers 12a and 128** with tributyltin hydride, added over six hours in toluene, gave the bicyclic lactone 17,¹² m.p. 168-170°C, α _D²⁰ -35.0 (c, 0.65 in CH₃CN), in yields of 66 and 64% respectively. Treatment of 17 with **trifluoroacetic acid in aqueous dioxan resulted in loss of the trimethylsilyl ether protecting group to give 9 in**

quantitative yield. In all cases, competition with capture of the uncyclised radical by the tin hydride was more problematic than in the cyclisation of the radicals derived from the δ -lactones. In contrast to the cis relationship of the carbon side chains on the cyclopentane rings formed by cyclisation reactions of the δ lactones, the adjacent carbon chains on the **cyclopentane ring formed in 9 are rruns to each other.**

AU attempts to induce 8a and 88 to undergo intramolecular base-catalysed Michael reactions failed. However, reaction of potassium **tert-butoxide with 12a and 128, in which the free hydroxyl group was protected as the trimethylsilyl ether, afforded the bridgehead** iodolactone **18,'s m-p. decomposes at 202oC,** $[\alpha]$ D^{20} +46.8 (c, 1.02 in CHCl₃), in yields of 35%, regardless of which epimer was used as the starting **material. Removal of the trimethylsilyl ether in 18 by trifluoroacetic acid in aqueous dioxan gave** 10." **m-p.** decomposes at 225^oC, α _{ID}²⁰ +10.6 (c, 0.71 in CH₃CN) in 81% yield; the structure of 10 was established by **X-ray crystslIographic analysis. Reaction of 10 with tributyltin hydride in benzene gave 9 in 67% yield. In all the y-lactone cyclisations, the new chiral centre formed in the reactions is controlled by the chirality of the carbon bearing the oxygen in the unsaturated lactone ring.**

In summary, this work describes the **opportunities for** stemochemical control **in the synthesis of** highly functionalised cyclopentanes in which the cis- or trans relationship of adjacent carbon substituents can be guaranteed by use of a γ or δ - lactone starting material. Radical cyclisations proceed in good yield in **all cases but at present only moderate yields have been obtained in intramolecular anionic Michael** cyclisations. The analogous iodoaldehydes for a number of sugars are available as both γ - and δ -lactones¹⁵ and the generality of this strategy for the use of carbohydrates in the synthesis of carbocycles¹⁶ is currently under investigation.17

REFERENCES.

15Bichard, C. J. F., Wheatley, J. R., Fleet, G. W. J., *Tetrahedron Asymm.*, 1994, 5, 431

¹⁶Ferrier, R. J., Middleton, S., Chem. Rev, 1993, 93, 2779; Hale, K. J., in Rodd's Chemistry of Carbon Compounds, 2nd Suppl. to Vol. *1 Parts E, F, G, Elsevier, Amsterdam, 1993.*
¹⁷This work has been supported by a fully funded Glaxo graduate award (to KYH).

¹Fleet, G. W. J., Sugar Lactones as Useful Starting Materials in Antibiotics and Antiviral Compounds: Chemical Synthesis and *Modification*, (Ed. Krohn, E., Kirst, H., Maas, H.), pp. 333-342, VCH Verlagsgesechhschaft, Wienheim, 1993; Estevez, J. C., Fairbanks, A. J., Hsia, K. Y., Ward, P., Fleet, G. W*.* J., *Tetrahedron Lett.*, 1994, 35, 3361 and references therein.

²Fairbanks, A. J., Elliott, R. P., Smith, C., Hui, A., Way, G., Storer, R., Taylor, H., Watkin, D. J., Winchester, B. G., Fleet, G. W. J., *Tetrahedron Leti.*, 1993, **34**, 7953.

³Elliott, R. P., Fleet, G. W. J., Pearce, L., Smith, C., Watkin, D. J., *Tetrahedron Lett.*, 1991, 32, 6227.

 4 All new compounds in this paper have spectroscopic data consistent with the structures proposed; correct microanalyses have been obtained for 4 α -cls, 4 α -trans. 4 β -cls, 4 β -trans. 5, 6, 8 β , 9, 12 α , 12 β , 13. 17 and 18.

⁵Vite, G. D., Alonso, B. A., Fraser-Reid, B., J. Org. Chem., 1989, 54, 2268; Rao, B. V., Chan, J. A., Fraser-Reid, B., Bull. Soc. Chim. (Fr.), 1993, 130, 428; Lopez, J. C., Gomez, A. M., Fraser-Reid, B., J. Chem. Soc., Chem. Commun., 1993, 762; Alonson, **R. A., Burgey, C. S., Rno, B. V., Vite, G. D., Volledm, R, Zmola, M. A., Fraser-Reid, B., L Am Cheat Sot., 1993,115,6666. 6Alomo, B. A.,** Vite. G. D.. McDeviu, **R. E., Fhm-Reid B., J. Org. Chem,** 199257.573.

⁷ Perlmutter, P., Conjugate Addition *Reactions in Organic Synthesis, Tetrahedron Organic Chemistry, Vol. 9, Pergamon Press,* Oxford, 1992.

⁸Selected data for iodolactone 6: v_{max} (KBr disc): 1799 (lactone C=O), 1737 cm⁻¹ (ester C=O); δ_C (CDCl3): 171.4 (s, C=O), 170.8 (s, C=O), 115.0 (s, CMe₂), 81.0, 80.6, 78.5 (3 x d, C-3, C-4, C-5), 52.2 (q, OMe), 47.6 (d, C-6), 41.3 (s, C-2), 29.9 (t, C-7), 25.3, 24.5 (2 x q, CMe2).

⁹Selected data for diicdo lactone 16: v_{max} (KBr disc): 1789 (lactone C=O), 1737 cm⁻¹ (ester C=O); δ_C (CDCl3): 170.1 (s, C=O), 169.4 (s, C=O), 115.2 (s, CMe2), 85.3, 83.5, 77.6 (3 x d, C-3, C-4, C-5), 53.9 (d, C-6), 53.4 (q, OMe), 37.6 (s, C-2), 25.5, 24.7 (2 x q, CMe2), 14.2 (d, C-7).

¹⁰Elliott, R. P., Fleet, G. W. J., Gyoung, Y. S., Ramsden, N. G., Smith, C., Tetrahedron Lett., 1990, 31, 3785.

¹¹ Selected data for bicyclic lactone 9: v_{max} (KBr disc): 3437 (OH), 1799 (lactone C=O), 1767 cm⁻¹ (ester C=O); δ C (CD3CN): **177.0 (s, C=O), 175.4 (s, C=O), 82.1, 78.5, 73.9 (3 x d, C-4, C-5, C-6), 50.2 (d, C-3), 34.0 (t, C-7), 31.2 (d, C-2).**

¹²Selected data for trimethylsilyl lactone 17: v_{max} (KBr disc): 1795 (C=O), 1781 cm⁻¹ (C=O); δ C (CDCl3): 175.8 (s, C=O), 174.2 (s, C=O), 81.8, 78.2, 74.4 (3 x d, C-4, C-5, C-6), 51.2 (d, C-3), 33.5 (d, C-2), 31.8 (t, C-7), -0.4 (q, SiMe3).

¹³Selected data for **uimethylsilyl iodolactone 18:** v_{max} (KBr disc): 1797 (C=O), 1783 cm⁻¹ (C=O); δ C (CD3CN): 175.0 (s, C=O), 172.4 (s, C=O), 80.2, 78.7, 77.4 (3 x d, C-4, C-5, C-6), 45.8 (s, C-2), 41.5 (d, C-3), 33.4 (t, C-7), -1.1 (q, SiMe3).

¹⁴Selected data for iodolactone **10:** v_{max} (KBr disc): 1794 (C=O), 1751 cm⁻¹ (C=O); 8_C (CD₃CN): 175.7 (s, C=O), 173.1 (s, C=O), **81.1, 78.5, 78.4 (3 x d, C-4, C-5, C-10)**, 46.2 (s, C-1), 43.0 (d, C-9), 34.5 (t, C-8).